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Abstract

Advancements in semiconductor fabrication over the past decade have catalyzed
extensive research into all-optical devices driven by exciton-polariton condensates.
Preliminary validations of such devices, including transistors, have shown encour-
aging results even under ambient conditions. A significant challenge still remains
for large scale application however: the lack of a robust solver that can be used to
simulate complex nonlinear systems which require an extended period of time to
stabilize. Addressing this need, we propose the application of a machine-learning-
based Fourier Neural Operator approach to find the solution to the Gross-Pitaevskii
equations coupled with extra exciton rate equations. This work marks the first
direct application of Neural Operators to an exciton-polariton condensate system.
Our findings show that the proposed method can predict final-state solutions to a
high degree of accuracy almost 1000 times faster than CUDA-based GPU solvers.
Moreover, this paves the way for potential all-optical chip design workflows by
integrating experimental data.

1 Introduction

The rapid advancement of exciton-polariton condensates [1] has led to the emergence of a wide
range of all-optical devices, such as switches [2–8], analogue simulators [9, 10], neuromorphic
computing [11–15], transistors [16–18], etc. The microcavity exciton-polariton (hereafter polari-
ton) [19] system consists of two main strongly coupled components: quantum well (QW) excitons and
photons trapped in microcavity. The former are electron-hole pairs bound by Coulomb interactions,
are frequently observed in semiconductor QWs, and the latter are generated from the distributed
Bragg reflectors (DBRs) aiming to create a stopband in the refreactive spectrum of the microcavity
structure [19], as illustrated in Figure 1. In this system, the exciton lifetime significantly surpasses
that of photons in microcavity. Thus, these high-quality DBRs, engineered to extend the photon
lifetime, ensure the preservation of the strong-coupling condition, where the light-matter coupling
strength surpasses the decay rate of any component within the polaritonic system [20].

Polaritons, often described as quasiparticles with characteristics that are half-light and half-matter,
have an impressively low effective mass due to their photonic components. This mass is approximately
five orders of magnitude less than that of a bare electron. Thus, the necessary temperature for
condensation is approximately 10K for inorganic semiconductor materials [1], which contrasts
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Figure 1: Sketch of the distributed Bragg reflectors (DBRs) microcavity integrated with quantum
wells (QWs). The DBR is comprised of 6 bilayers of alternating low (depicted in light blue) and
high (shown in dark green) refractive index materials. Also, 6 QWs (represented in black) with
their respective barriers (in gray) are depicted. The substrate, located at the base of the structure, is
presented in dark yellow.

significantly with atomic condensates such as Rubidium-87, which require temperatures around
170 nK [21]. Notably, using organic materials, polariton condensation can be realized even at room
temperature [22–24]. In polariton condensates, due to their excitonic component, the predominant
repulsive interaction between polaritons results in a blue-shifting effect on the potential and gives
rise to rich nonlinear effects [25, 26]. In essence, it is the photonic (light-like) component of the
polaritons that confers their notably light effective mass suitable for condensates, while the excitonic
(matter-like) component is responsible for the observed nonlinear effects.

The emergence and adoption of all-optical devices necessitates the development of precise and
adaptable simulation tools. Just as Electronic Design Automation (EDA) played a pivotal role in the
evolution of chip design, there is a pressing need for emulators that can capture the rich of nonlinear
characteristics inherent in optical devices. A case in point is the groundbreaking development of an
optically-activated transistor switch. Rooted in advancements in polariton condensates, this transistor
was initially conceptualized for operations at cryogenic temperatures [16]. However, strides in
research have broadened its applicability, making it feasible even under ambient conditions [17, 18].
These rapid advancements emphasize the need for comprehensive simulations in the design of large-
scale logic gates. Hence, crafting a robust theoretical framework becomes imperative, one that can
effectively allow manipulation of the potential profile via specific input configurations.

To this aim, a robust solution to the Gross-Pitaevskii equation (GPE) which is used to theoretically
describe the condensates is required [27]. While GPU-based GPE solvers tailored for both uni-
form [28–31] and non-uniform meshes [32] currently exist, we aim to adopt an even more efficient
machine-learning (ML) based solver that is intended to notably accelerate the computational process,
especially in the context of designing extensive transistor networks.

Thus far, a wide variety of ML architectures have been proposed to approximate solutions to general
classes of PDEs. These range from convolution-based methods, such as variants of the U-Net
architecture [33], to operator-learning methods such as Deep Operator Networks (DeepONets [34]),
Graph Neural Operators [35], Multipole Graph Neural Operators [36], Fourier Neural Operators [37]
and Physics-informed Neural Operators [38]. Though convolution-based methods have shown
promise regarding accuracy of future state predictions, they fail to scale in compute efficiency to
larger systems, even with recent advancements [39]. Operator-learning methods overcome this
bottleneck by learning mappings between infinite-dimensional spaces, allowing them to predict
solutions at different discretiations at a similar speed.

In this work, we study the application of the Fourier Neural Operator (FNO) architecture to ap-
proximate solutions to the GPE. We are interested in this specific variant of Neural Operator as its
mathematical formulation relates very closely to the Split-step Fourier Method (SSFM), which is the
numerical method used to solve the GPE in this instance. Moreover, FNOs have shown widespread
success in application to many other areas of physics and engineering [40–43].

The structure of this paper is outlined as follows: In Section 2, we provide an introduction to exciton-
polariton condensates and explain the physical quantities employed within the GPE. Section 3
introduces the Neural Operator architecture, detailing its compatibility with the GPE, especially when
integrated with the rate equation. This section further elaborates on data generation and preparation
methods. Our findings are presented in Section 4, future work in Section 5 and the general conclusions
are given in Section 6.
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2 Background

2.1 Exciton-polariton condensates
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Figure 2: Comparison of pump profiles and wavefunction density with scattering process illustration.
Left column: The upper panel shows the nonresonant pump profile featuring three Gaussian spots,
while the lower panel shows the wavefunction density of the condensates at the final time. Three white
dashed lines indicate the central positions of the pump regions and align with their corresponding
locations on the condensate density map. Right column: Depiction of the scattering process, tracing
the transition from the hot electron-hole plasma phase, through the reservoir cooling phase, to the
scattering in the condensates. Only the lower polariton branch of the polariton energy mode is shown
here.

Polariton condensates, being an non-equilibrium process, start with nonresonant excitation (see the
right column of Figure 2). The hot electron-hole plasma initially undergo rapid cooling, primarily
driven by emissions mediated by the longitudinal-optical phonons, forming excitions at the high
momentum of the lower polariton (LP) branch. Subsequent interactions between excitons and
acoustic phonons, as well as exciton-exciton scatterings, lead polaritons to a transitional ’bottleneck
region’ within the LP branch, as illustrated in Figure 2. It is worth noting that the terminology
’polariton’ instead of ’exciton’ is used here because at very high position of the LP branch the
photonic components of the polaritons are barly present and then the quasiparticles arrive all the
way to the bottleneck region where more photons are coupled. By the end of the process, parametric
scattering, together with momentum conservation, takes place, which results in a segment of the
polaritons to transition to a higher-momentum state, while another segment descends into the lower-
momentum branch of the LP forming condensates. Ballistic polariton flow (see the left column of the
Figure 2) is activated once the system is above the condensate threshold [44]. These condensates
represent large-scale coherent states, distinct from the initial nonresonant inputs [1].

Technological advances, such as the use of spatial light modulators and precise semiconductor
fabrications, allow the manipulation of the pump profile and rich nonlinear condensate outputs,
leading to engineering of quantum fluids of light [45]. Extensive studies have been conducted on the
ability of nonresonant optical techniques to manipulate the motion of condensate polaritons, such
as customized momentum distributions [46], condensate amplifiers [44, 47], waveguides [48–51],
directional superfluids near equilibrium [52]. The ability to manipulate the condensate flow through
reservoir engineering shows its potential for quantum computing [53].
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2.2 Gross-Pitaevskii equation

The dynamics of polariton condensates can be described by the GPE coupled with the rate equation
of the exciton reservoir denoted as N [27]:

iℏ
∂

∂t
Ψ =

{
− ℏ2

2m
∇2 + α|Ψ|2 +G

[
N +

η

Γ
P (r)

]
+ i

ℏ
2

[
RN − γ

]}
Ψ, (1)

∂

∂t
N = −

[
Γ +R|Ψ|2

]
N + P (r), (2)

where m is the effective mass of the polariton, α and G stands for, respectively, polariton-polariton
and polariton-reservoir interaction, R denotes the scattering rate from the reservoir to the condensates,
η refers to the ratio of the dark excitons, and γ (Γ) is the decay rate of the polariton (reservoir). The
detunning between the exciton and the photon mode can greatly alter the interaction terms with the
relationship α = g|χ|4 and G = 2g|χ|2, and g = g0/N where g0 is the exciton-exciton interaction,
NQW the number of QWs, and |χ|2, representing the presentage of exciton of which the polariton
consists, is the Hopfield coefficient [54] of the excitonic branch. In this work, the continuous-wave
(CW) pump, denoted by P (r), is used to replenish the reservoir due to the losses from the system.
The nonlinear term |ψ|2 appearing in both the pump-to-reservoir transition [see Equation (2)] and the
superfluid in the condensates [see Equation (1)], produce the rich nonlinear characteristic induced
from the pump to the condensate.

In the case of CW excitation under a weak pumping regime, the approximate value of |ψ|2 tends
towards zero. In this situation, the rate of reservoir with respect to time maintains a steady state,
or in mathematical terms, ∂N/∂t = 0. The determination of threshold power, denoted at pth,
is possible through an analysis of the right-hand side (r.h.s.) of Equation (1) where RN = γ
serves as a representative of the equilibrium state between gain and loss. Therefore, the threshold
power pth = γΓ/R is obtained. This suggests that when the population of polaritons exceeds
the condensation threshold pth, a detectable density value manifests itself. The real potential of
Equation (1) denoted V in the stationary state of the system, therefore, is

V (r) = α|ψ|2 +G
( 1

Γ +R|ψ|2
+
η

Γ

)
P (r). (3)

The real potential is composed of two main components: one originating from the pumping region
[first term on the r.h.s of Equation (3)] and the other stemming from the interactions among the
polaritons outside this region [second term on the r.h.s of Equation (3)]. When the pumping power is
below the threshold, the direct contribution of the potential goes directly into the pumping profile.This
relationship is represented as V (r) = (1 + η)(G/Γ)P (r). The spatial profile chosen for the
demonstration of NG Gaussian spots. That is

P (r) =

NG∑
i

piGi(r), (4)

where pi stands for strength of each spot and the normalized Gaussian function Gi(r), with full width
at half maximum (FWHM) denoted σ, is defined as

Gi(r) =
1

2πσ
exp

(
−|r − ri|

2σ2

)
. (5)

Note that ri represents different location of spots.

3 Methodology

3.1 Fourier Neural Operators

The numerical solution to Equations (1) and (2) is derived using the SSFM, detailed in Appendix A.
A natural ML analog to this classical method is the FNO architecture [37]. More generally, Neural
Operators [55] are a class of models which learn mappings between two infinite-dimensional spaces
from a finite set of input-output pairs. Many variants of the Neural Operator architecture have been
applied to approximate solutions to Partial Differential Equations, such as in [40–43]. The Neural
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a(x) P Fourier layer · · · Fourier layer Q u(x)

ν(x) W + σ

F R F−1...

Multiple
modes

...
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4

Figure 3: Architecture of the Fourier Neural Operator: The process begins with the input a(x)
which undergoes a lifting operation, denoted as P . This is followed by 4 consecutive Fourier layers.
Subsequently, a projector Q transforms the data to the desired target dimension, resulting in the
output u(x). The inset provides a detailed view of the structure of a Fourier layer. Data initially flows
to the layer as ν(x) and is bifurcated into two branches: one undergoes a linear transformation W ,
and the other first experiences a Fourier transformation, from which the 32 lowest Fourier modes are
kept and the other higher modes are filtered out by undergoing a transformation R, and ends with an
inverse Fourier transformation with these left modes. The two data streams then converge, followed
by the application of an activation function σ.

Operator architecture consists of a lifting operation P , followed by iterative updates using a Kernel
Integral Operator K, and a final projection operator Q, as defined in Equation 6.

Gθ := Q ◦ σT (WT−1 +KT−1 + bT−1) ◦ ... ◦ σ1(W0 +K0 + b0) ◦ P (6)
Here σ corresponds to a non-linearity and W and b correspond to the weights and biases of the Kernel
Integral Layer, respectively. P and Q are point-wise fully local projection and lifting operators. The
choice of the Kernel Integral Operator K delineates the class of the Neural Operator. Specifically, the
FNO (see Figure 3) uses the Kernel Integral Operator defined by Equation 7 below.

(Kt(vt))(x) = F−1(Rϕ · F(vt−1))(x) ∀x ∈ Rn (7)

Here F and F−1 correspond to the Fourier and Inverse Fourier Transforms and Rϕ corresponds to
the Fourier Transform of a periodic function arising from the definition of a Kernel Integral Operator
given in [37]. This object is parameterised by a linear transformation of the top k modes pertaining
to the given layer, which acts as a hyperparameter in the model.

The natural choice of the FNO architecture for approximating the solution to Equations 1 and 2 is
due to the inductive bias that arises from the SSFM - FNO correspondence stated below.
Theorem 1. (SSFM-FNO Correspondence) Suppose that σ ∈ (TW ) is a Tauber-Wiener function,
X is a Banach Space, K ⊂ X is a compact set, V is a compact set in C(K), Ψt is a nonlinear
continuous operator representing the solution of the first-order Split-step Fourier Method at time t,
then for any ϵ > 0, there are a positive integer n, m points x1, ..., xm ∈ K, and real constants ci, θi,
ξij , i = 1, ..., n, j = 1, ...,m, such that for

Rϕ :=

n∑
i=1

ciσ

 m∑
j=1

ξiju(xj) + θi

 , (8)

∣∣∣∣∣Ψt+∆t(Ψt)(x)−F−1(Rϕ · F(vt))(x))

∣∣∣∣∣ < ϵ (9)
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holds for all u ∈ V .

Proof. See Appendix B.

3.2 Data Generation

The training and testing datasets are constructed based on varying pump profiles, P (r), as elucidated
in Equation (4). This profile is characterized by four Gaussian spots, represented by NG = 4. Out of
these, three spots have their power adjusted to exceed the threshold, specifically pi = 1.6 pth, while
the power of the remaining spot is set below the threshold at pi = 0.5 pth. Each spot’s spatial profile
is represented as Gi(r). Moreover, the boundary condition that the condensate density vanishes near
the computation frame is also applied.

These profiles are stochastically determined within a square region that measures 64µm× 64µm out
of the entire configuration with 128µm× 128µm. The region where Gaussian stops stay is smaller
than the full grid, to make sure that they are still far from the region where the boundary condition is
applied. Care has also been taken to ensure that the Gaussian spots are non-overlapping. Additionally,
every pump profile is unique, and among the spots with power exceeding the threshold, each one
is distinct from the others, thereby eliminating any potential redundancy. Given 0.5µm resolution
per pixel per dimension, the total datasets for pump configuration is with size 256 × 256 × 1246
where 256 represents each square map size per dimension and 1246 is the number of different pump
configurations (of which 250 configurations are used for testing and 996 for training respectively).
The datasets for the density map is with size 256× 256× 2× 1246 where 2 refers to the density at
the initial and final time.

It is worth mentioning that the systems of all the datasets are chosen with system only at stationary
state with single energy mode, which means that the results with multiple energy modes are excluded.
In multimode cases, the wavefunction density changes at different times, which can be found in
experiments [56, 57].

For better emulating the experiment σ ≈ 0.85µm, standing for FWHM of each Gaussian spot
equaling to 2µm, is chosen. The simulation is based on InGaAs QWs [58] with slightly negatively
detuned cavities. The parameters are the following: m = 0.28meVps2 µm−2, |χ|2 = 0.4,NQW = 6,
g0 = 0.01meVµm2, ℏR = 10g, η = 2, and γ−1 = Γ−1 = 5.5 ps.

4 Results

In Figure 4, we present model predictions for 3 representative test cases. Note that we have carefully
chosen three distinct pump profiles to visualize model performance over varying inputs. As we see
from the second row of the figure, the model is highly accurate in predicting the steady-state solution
for the GPE. It is not only able to predict accurate values at pump locations and their locality but it
is also able to predict direction of flow for the wave fronts as well as the scattering from the barrier
produced from the spot below the threshold. Where the model exceeds expectations most is in the
detail to which it also captures the interference pattern for different pump configurations. We see an
almost identical pattern, including the parity of fringes among spots, between the predictions and
simulation ground truths. The parity of these fringes are responsive to the distance between spots
(see experiment in [57]), which also indicates that our model is capable of capturing these details.

Looking at error plots between predictions and ground truth values, we see that the highest errors
occur very close to the pump locations. This is due to the high degree of nonlinearity which is
exhibited near this region and the information loss that occurs from the Fast Fourier Transform cutoff
modes in the FNO architecture. We see other smaller errors around the edges of wave fronts which
could potentially be tackled using physics-informed gradient losses, which we intend to test in future
work.

We present a full overview of cell averaged absolute difference errors in Figure 5 for all 250 test
cases. The above 3 test predictions correspond to cases 210, 74 and 87 respectively. The cell averaged
errors on the test set range between 1.667 × 10−3, for case 184, and 9.282 × 10−3, for case 142
(see Figure 6). We observe a bimodal distribution in the errors with two distinct bands. Empirically,
the lower band corresponds to pump configurations where distance between the pumps is smaller,
leading to better interference predictions. The higher band corresponds to pump configurations where
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Figure 4: Comparison of the prediction from the Fourier Neural Operator approach. The columns,
left to right, show different pump configurations. The rows, from top to bottom, are normalized pump
profiles, predictions, normalized ground truths, and errors.
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at least one pump is far away from the other two, leading to worse interference pattern predictions.
This is evident in the results from Figure 7 where pumps are very far apart as opposed to Figure 8
where pumps are closer together.

We found that, when we trained the FNO with a cutoff of 16 Fourier modes for both spatial directions,
which is conventional, that the model was not able to capture nonlinearities in the system to a great
extent and that it would take longer to converge. We also observed that predictions were accurate in
a large square sub-region of the grid but performance dropped outside this region. This was likely
due to the fact that with a 256× 256 grid, in order to capture the finer details, we would need to also
include higher frequency modes of the Fourier expansion. To this avail, we increased the cutoff to
32 Fourier modes in both directions and observed a significant improvement in performance. For
larger grid sizes, there is a higher probability that the distance between the randomly generated pump
locations will be greater. This would require us to increase further the number of Fourier modes to
retain similar levels of accuracy or employ dimensionality reduction techniques.

With both the FNO model and numerical solver run in parallel computing using a GPU, the time to
predict solutions for 250 cases using the CUDA-based numerical method took 3463.06 s, whereas
the FNO model took 3.83 s.

5 Future Work

In this work, we use numerical datasets for training and prediction. However, in the future we hope
to directly use experimentally collected data to train the model on ground truth physics. Pump
profiles and wavefunction density maps shown in Figure 4 can be obtained directly from spatial
light modulator and photoluminescence spectroscopy, respectively. Due to the improvement in
semiconductor fabrication, clear interference patterns, which are very close to those simulated shown
here, can be found from inorganic semiconductor materials [57, 59]. Furthermore, with the help of a
streak camera, photoluminescence can be captured at the picosecond level, which makes it possible to
make predictions of a time-resolved condensate formation on the basis of purely experimental data.

Various general ML methods have been proposed to incorporate underlying physics-based losses
and information into the model to aid the learning task, such as in [60–63]. In this work, we have
taken a purely data-driven approach to training, however, we believe that incorporating additional
physics-informed loss terms will strictly increase the rate of convergence and accuracy. This is
especially appealing given that we have a strong theoretical understanding of the underlying system.

In the future, we aim to also propose a novel Neural Operator architecture entirely, tailored to closer
align to the computational procedure of the SSFM. As shown in Appendices A and B, the FNO can
be seen as a first-order approximation to the SSFM. We aim to instead to take structure from the BCH
formula at second-order and embed this in the model. This will better guide convergence dynamics
in the weight landscape, which in theory will produce more accurate solutions at a faster rate.

6 Conclusions

In the present study, we explored the potential of the FNO in the context of polariton condensates.
Our findings, as detailed in Section 4, demonstrate a notable alignment with the simulation data with
an approximate 1000× speed up in solution generation compared to CUDA-based GPU solvers. This
research paves the way for the conceptualization and development of advanced large-scale all-optical
devices. Furthermore, this method draws parallels with the principles of EDA traditionally used in
chip design. It introduces an innovative avenue to meet the growing demand for fast and reliable
solutions in the realm of all-optical chip design.
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Appendix A Split-step Fourier method

In this Appendix, the numerical solution to Equations (1) and (2) is derived using SSFM, which
serves as the supplementary information for Section 3.1. Let us start with the GPE first and Equation 1
can rearranged as

∂

∂t
Ψ =

{
i
ℏ
2m

∇2 − i
α

ℏ
|Ψ|2 − i

G

ℏ

[
N +

η

Γ
P
]
+

1

2

[
RN − γ

]}
Ψ. (A1)

The direct solution from Equation (A1) at time interval [t, t+∆t] is

Ψt+∆t = exp [(f̂L + f̂N )∆t]Ψt, (A2)

where

f̂L = i
ℏ
2m

∇2, (A3)

f̂N = −iα
ℏ
|Ψ|2 − i

G

ℏ

[
N +

η

Γ
P
]
+

1

2

[
RN − γ

]
. (A4)

Note that since [f̂L, f̂N ] ̸= 0, the exponentiation identity cannot be applied directly, namely,
exp [f̂L + f̂N ] ̸= exp [f̂L] exp [f̂N ]. By applying the Baker–Campbell–Hausdorff (BCH) formula at
second order and the strang splitting, we have

Ψt+∆t = exp [
1

2
f̂N∆t] exp [f̂L∆t] exp [

1

2
f̂N∆t]Ψt, (A5)

which give the accuracy of ∆t3. The essence of SSFM is that it can convert the nonlinear operator
f̂N into the linear one through the Fourier transform. We can always construct the relation that

∂

∂t
Ψ = f̂LΨ. (A6)

Then, applying the Fourier transform for above equation, we have

∂

∂t
F [Ψ] = f̂PF [Ψ], (A7)

where

f̂P = −i ℏ
2m

|k|2, (A8)

is the momentum operator. This implies that Equation A6 can be rewritten as

Ψt+∆t = exp [
1

2
f̂N∆t]F−1

[
exp [f̂P∆t]F

[
exp [

1

2
f̂N∆t]Ψt

]]
. (A9)

Ultimately, the final state wavefunction can be obtained by iteraction of Equation (A9) overall the
infinitesimal time steps. During each iteration, N is updated within the operator f̂N . That is

Nt+∆t = exp
[
(−Γ +R|Ψ|2)∆t

]
Nt + P∆t. (A10)

The kernel defined by Equation (A5) is used to calculate the ground truth for the simulation with
BCH at second order. However, if we limit ourselves at BCH at first order, then corresponding
Equation (A9) can be simplified as

Ψt+∆t = F−1

[
exp [f̂P∆t]F

[
exp [f̂N∆t]Ψt

]]
. (A11)

From here, Equation (A11) takes the functional form of the Kernel Integral Operator of the FNO
introduced in Section 3.1. This is stated formally in the SSFM - FNO correspondence given in
Theorem 1.
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Appendix B Theorems

Theorem B1. (Universal Approximation Theorem for Functionals.) Suppose that σ ∈ (TW ) is
a Tauber-Wiener function, X is a Banach Space, K ⊂ X is a compact set, V is a compact set in
C(K), f is a continuous functional defined on V , then for any ϵ > 0, there are a positive integer n,
m points x1, ..., xm ∈ K, and real constants ci, θi, ξij , i = 1, ..., n, j = 1, ...,m, such that

∣∣∣∣∣∣f(u)−
n∑

i=1

ciσ

 m∑
j=1

ξiju(xj) + θi

∣∣∣∣∣∣ < ϵ (B1)

holds for all u ∈ V .

Proof. See [34] and [64–66].

Theorem B2. (Universal Approximation Theorem for Operators.) Suppose that σ ∈ (TW ) is a
Tauber-Wiener function, X is a Banach Space, K1 ⊂ X , K2 ⊂ Rd are two compact sets in X and
Rd, respectively, V is a compact set in C(K1), G is a nonlinear continuous operator, which maps
V into C(K2), then for any ϵ > 0, there are positive integers n, p, m, constants cki , ξkij , θki , ζk ∈ R,
wk ∈ Rd, xj ∈ K1, i = 1, ..., n, k = 1, ..., p, j = 1, ...,m, such that

∣∣∣∣∣∣G(u)(y)−
p∑

k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

σ(wk · y + ζk)

∣∣∣∣∣∣ < ϵ (B2)

holds for all u ∈ V and y ∈ K2.

Proof. See [34] and [64, 67, 66].

Theorem B3. SSFM-FNO Correspondence. Suppose that σ ∈ (TW ) is a Tauber-Wiener function,
X is a Banach Space, K ⊂ X is a compact set, V is a compact set in C(K), Ψt is a nonlinear
continuous operator representing the solution of the first-order Split-step Fourier Method at time t,
then for any ϵ > 0, there are a positive integer n, m points x1, ..., xm ∈ K, and real constants ci, θi,
ξij , i = 1, ..., n, j = 1, ...,m, such that for

Rϕ :=

n∑
i=1

ciσ

 m∑
j=1

ξiju(xj) + θi

 , (B3)

∣∣∣∣∣Ψt+∆t(Ψt)(x)−F−1(Rϕ · F(vt))(x))

∣∣∣∣∣ < ϵ (B4)

holds for all u ∈ V .

Proof. Limiting the solution of Equation 1 to first-order in the BCH formula, we get

Ψt+∆t(Ψt)(x) = F−1

[
exp [f̂P∆t]F

[
exp [f̂N∆t]Ψt

]]
. (B5)

Also considering the Kernel Integral Operator for the FNO as defined in Equation 7, we have

(Kt+1(vt))(x) = F−1(Rϕ · F(vt))(x) ∀x ∈ Rn (B6)

It is clear that these two equations are equivalent for someRϕ = exp [f̂P∆t] and vt = exp [f̂N∆t]Ψt.

Now, appealing to the Universal Approximation Theorems B1 and B2, and using the fact that a
non-linearity σ is applied following every Kernel Integral layer, it is clear that there exists some
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learnable Rϕ which can approximate exp [f̂P∆t], and indirectly learnable v which can approximate
exp [f̂N∆t]Ψt, to an arbitrary margin ϵ. It directly follows that the Fourier Kernel Integral Operator
can approximate the first-order SSFM time step update to an arbitrary degree of accuracy which then
implies that the FNO as a whole can approximate the solution to the GPE to an arbitrary degree of
accuracy, with the number of Kernel Integral layers in the FNO dictating the time discretization ∆t
of the approximation.

Appendix C Model Hyperparameters

Table 1: Model Hyperparameters

Hyperparameter Value
Learning Rate 0.001
Batch Size 16
Epochs 1000
Optimizer Adam
Loss Function MSE
Fourier Layers 4
Height Modes 32
Width Modes 32
Hidden Dimension 64
Activation Function GeLU

The model was trained on an NVIDIA RTX 3090 GPU with an Intel i9 9900KF and each epoch took
on average 9.5s to train.

Appendix D Extended Results

Figure 5: Absolute average difference for each test case normalised by grid size.
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Figure 6: Comparison of the prediction from the Fourier Neural Operator approach. The columns,
left to right, show different pump configurations (test case number 182, 120, and 142 from Figure 5).
The rows, from top to bottom, are normalized pump profiles, predictions, normalized ground truths,
and errors.
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Figure 7: Comparison of the prediction from the Fourier Neural Operator approach. The columns,
left to right, show different pump configurations (test case number 5, 89, and 211 from Figure 5).
The rows, from top to bottom, are normalized pump profiles, predictions, normalized ground truths,
and errors.
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Figure 8: Comparison of the prediction from the Fourier Neural Operator approach. The columns,
left to right, show different pump configurations (test case number 136, 181, and 202 from Figure 5).
The rows, from top to bottom, are normalized pump profiles, predictions, normalized ground truths,
and errors.
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