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Abstract
The global push to advance Carbon Capture and
Sequestration initiatives and green energy solu-
tions, such as geothermal, have thrust new de-
mands upon the current state-of-the-art subsur-
face fluid simulators. The requirement to be able
to simulate a large order of reservoir states simul-
taneously, in a short period of time, has opened
the door of opportunity for the application of ma-
chine learning techniques for surrogate modelling.
We propose a novel physics-informed and bound-
ary condition-aware Localized Learning method
which extends the Embed-to-Control (E2C) and
Embed-to-Control and Observe (E2CO) models
to learn local representations of global state vari-
ables in an Advection-Diffusion Reaction system.
Trained on reservoir simulation data, we show
that our model is able to predict future states of
the system, for a given set of controls, to a great
deal of accuracy with only a fraction of the avail-
able information. It hence reduces training times
significantly compared to the original E2C and
E2CO models, lending to its benefit in application
to optimal control problems.

1. Introduction
Subsurface fluid simulators play an important role in mod-
elling various modern geological processes. They enable
the efficient and sustainable utilization of geothermal energy
by modelling heat and mass transfer processes; they play
a vital role in modern Carbon Capture and Sequestration
(CCS) initiatives by assessing optimal locations to inject
CO2 into geological formations, and they facilitate the effi-
cient extraction of natural resources to reduce the risks of
exploration. Developments in these areas have produced
novel challenges to the production workflow of subsurface
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fluid modelling. The task of optimizing the location and vol-
ume of CO2 injection into a porous medium, for instance,
requires vast amounts of simulation data and compute power
for each individual control state and time step of the system
to determine the maximal storage case. This is especially
problematic for applications in which we require real-time
decision making. This has hence given birth to a new class
of subsurface surrogate modelling techniques using machine
learning.

The governing equation of subsurface flow, derived from the
law of mass-conservation and Darcy’s law, relates the fluid
flow and flow potential gradients of a multi-phase porous-
medium as given below
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where k denotes the permeability tensor, kr the relative per-
meability, µ the viscosity, B the formation volume factor, p
the pressure, S the saturation, ϕ the porosity, t the time, γ
the specific weight, q the source/sink terms, z the depth and
Vb the bulk volume. The subscript sc represents standard
conditions and α and β are unit field constants. More gener-
ally, this equation is an instance of an Advection-Diffusion-
Reaction (ADR) partial differential equation (PDE) which
describes the transport and transformation of scalar quan-
tities (such as pressure and saturation in this case) in a
medium due to advection, diffusion and reaction, as the
name suggests. The ADR equation arises in many other
areas of science and engineering such as environmental en-
gineering, where it can be applied to help understand the
spread of contaminants in groundwater, biomedical engi-
neering, where it can be applied to model the transport of
drugs in biological tissues, and in chemical engineering,
where it can be used to help optimize reactor design and
operation. Although our proposed model focuses on sub-
surface fluid dynamics, it easily generalises to all the above
areas with the utilisation of the appropriate domain specific
knowledge.

The above equation of subsurface flow describes a highly
non-linear system that even state-of-the-art numerical
solvers using Newton’s method require significant compute
power to converge to a solution. For this reason, various
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reduced-order-models (ROMs) have been developed which
approximate the evolution of state variables in time to be
linear. The most common such ROM is the Proper Orthog-
onal Decomposition Trajectory Piece-wise Linearization
Reduced Order Model (POD-TPWL) (Cardoso & Durlof-
sky, 2010; He et al., 2011; He & Durlofsky, 2013; Rousset
et al., 2014; TPW, 2015; He & Durlofsky, 2015; Jin &
Durlofsky, 2018) which reduces the size of the system-state
variables via the POD step before approximating their evo-
lution linearly for each time step of the control. Although
this method has played an important role in speeding up
calculations, in recent years machine learning methods have
been developed which, with a one time overhead training
cost, promise an even faster inference of the next system
state.

Early on, some general machine learning models were first
applied to this problem by treating the initial field values at
each point as the input to the model and the numerical solu-
tion to the PDE as the output for time-independent cases and
the next step field values as the output for time dependent
cases. These were purely data-driven approaches which
were agnostic to the form or the physics of the underlying
PDEs governing the system. Some of these early methods,
which now serve as a benchmark for which to compare more
advanced methods to, are: NN: a simple point-wise feed-
forward neural network. RBM: the classical Reduced Basis
Method (using POD basis). FCN: a state-of-the-art neural
network architecture based on Fully Convolution Networks
(Zhu & Zabaras, 2018). PCANN: an operator method using
PCA as an auto-encoder on both the input and output data
and interpolating the latent spaces with a neural network
(Bhattacharya et al., 2021). For time dependent tasks, pop-
ular models in other time dependent regression tasks were
applied such as: ResNet: a residual learning framework to
ease the training of networks that are substantially deeper
than those used previously (He et al., 2015). U-Net: A pop-
ular choice for image-to-image regression tasks consisting
of four blocks with 2-d convolutions and deconvolutions
(Ronneberger et al., 2015).

As developments continued, one of the main directions of
success to model non-linear control dynamics came from the
Embed-to-Control (E2C) model (Watter et al., 2015). The
E2C model consists of a variational auto-encoder and a tran-
sitional block which learns to generate image trajectories
from a latent space in which the dynamics are constrained
to be locally linear. This work was subsequently modified
by replacing the variational auto-encoder with an ordinary
encoder-decoder structure and then applied to the problem
of 2D reservoir surrogate modelling by (Jin et al., 2020).
The results produced by this model were extremely accurate
compared to previous methods and formed the bed rock
for the expansion of the model to predict well outputs also
for resource extraction in (Coutinho et al., 2021). The thus

Figure 1. 2D architecture for Embed-to-control applied to the reser-
voir simulation problem where xs

t and xp
t represent the saturation

and pressure values respectively and ut the well controls.

proposed Embed to Control and Observe (E2CO) model
added an additional parameterized network flow in the tran-
sitional block to predict well outputs such as flow rates at
source/sink points. Both the E2C and the E2CO models
were naturally expanded to 3D grids by (Atadeger et al.,
2022) by remodelling the architecture to involve 3D con-
volution blocks and transposes in the encoder and decoder
respectively to more reflect real-world systems in the area.
The main draw back of these current models however is that,
although they produce promising predictions for future time
steps, the training times grow rapidly as grid sizes increase.
Training time for a 3D case of 5× 105 cells, which is on the
lower end of a real-world case, takes upwards of 47 hours
on a NVIDIA Tesla V100 GPU. Various new architectures
have been proposed to tackle this problem, such as Neural
Operators (Li et al., 2020b;a; 2021; 2022; Kovachki et al.,
2023) and DeepONet (Lu et al., 2021), but in their current
state, they do not rival the accuracy of convolution-based
methods.

We hence propose Localized Learning for Embed to Control
(LL-E2C) and Localized Learning for Embed to Control
and Observe (LL-E2CO), a method that learns on a random
set of sub-grids of the original full grid of simulation, using
physics-informed losses, and reconstructs the next state
using the locally learned model. The intuition behind this
being that physics at a local level is constant everywhere
when boundary conditions are accounted for. We show that
we achieve similar levels of accuracy to E2C and E2CO with
our model while drastically reducing the training times.

2. Preliminaries
The task that we apply our model to is that of a reservoir
simulation. The reservoir is discretized into a regular grid
and different geological structures are modelled by spatially
varying but temporally static permeabilities across the grid.
At each point in the grid we have a certain pressure and
saturation value and at various points in the reservoir we
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Figure 2. Three different cases of inducing boundary condition
awareness in the model. The solid line indicates the sector which
is used in training and inference and the cells inside the dotted
lines indicate the part of the sector which are ‘stitched’ together
to recreate the full next state. Left. The stitched sub-sector shares
hard boundaries on the top and left with the actual grid, teaching
the model that flow cannot continue in that direction. Middle. The
stitched sub-sector shares no hard boundaries allowing the model
to learn that fluid can flow out of the sub-sector in all directions.
Right. The sub-sector shares the same hard boundaries on the left
and bottom as the grid, imposing Dirichlet boundary conditions,
and Von Neumann on the right and top.

have sources/sinks in the form of injection/production wells.
We can control these wells to affect the source an sink terms
in the governing equation which in turn aids an important
application of reservoir simulation, that is the deduction of
optimal control and well placement for a given subsurface
which maximises well production and storage rates.

2.1. Problem Setting

Let a fluid dynamical system be discretized on a regular grid
with dimensions n = Nx×Ny×Nz . The state of the system
at time t is represented by xt ∈ G, where G ⊂ Rn×dx .
Given an applied control ut ∈ U , where U ⊂ Rdu , we aim
to model the arbitrary, smooth, system dynamics function
f in the time evolution equation xt+1 = f(xt,ut) and the
function g determining the well outputs yt+1 ∈ Y where
Y ⊂ Rdu , given by yt+1 = g(xt,ut).

2.2. Data

Training and testing data is generated by a proprietary high-
fidelity reservoir simulator (HFS). We consider two separate
cases to evaluate our model, a 2D (60×60) case and a larger
3D (60 × 220 × 40) case. In the 2D case, each train/test
sample consists of pressure pt ∈ Rn, saturation St ∈ Rn

and control ut which corresponds to the source/sink terms
for T = 24 times steps. We also have well output values for
the next time step yt+1 in the case of E2CO. The input to the
model is constructed such that xt = [pt,St]. Permeability
and source/sink location information, which is static with
time, are available where required. The same data is sim-
ulated for the 3D case but with T = 20. We generate 400
such samples and utilise a 3:1 split for training and testing.

3. Methodology
3.1. E2C Reduced Order Model

The E2C model architecture, figure 1, consists of a param-
eterized encoder ϕθ : G → Z , where Z ∈ Rnz , transi-
tion layer τθ : Z × U → Z and decoder ψθ : Z → G.
The composition of these three gives the overall model
Mθ = {ψ ◦ τ ◦ ϕ : G → G}. The encoder ϕ consists of
4 convolution layers followed by 3 2-layer ResNets and a
final dense layer to map from the state space G to the locally
linear latent space Z . The decoder ψ conversely maps back
from latent space to state space using a dense layer followed
by 3 2-layer transposed ResNets and 4 transposed convolu-
tion layers. The transition layer τ in between aims to model
the latent transition function f lat of the dynamics given by
zt+1 = f lat(zt,ut). Given the state and action sequences
z1:T = {z1, ..., zT } and u1:T = {u1, ...,uT }, optimal con-
trols which give rise to the trajectory z1:T for a given f lat can
be determined using traditional optimal control algorithms.
These algorithms approximate global non-linear dynamics
with local linear dynamics and it can be shown (section 2.2
of Watter, M. et al. (Watter et al., 2015)) that for a reference
trajectory z̄1:T and controls ū1:T , the system is linearized as

zt+1 = A(z̄t)zt + B(z̄t)ut + o(z̄t),

where A(z̄t) = δf lat(zt,ut)
δz̄t , B(z̄t) = δf lat(zt,ut)

δūt
are local Jaco-

bians and o(z̄t) is an offset. This equation is the inspiration
for the transition layer and the local Jacobians and offsets
are parameterized as trainable weights in the model for cal-
culating zt+1.

The loss function of the model is a composition of tradi-
tional auto-encoder loss functions and physics-informed
loss functions as follows,

L = Lrec + Lpred + θtrans × Ltrans + θflux × Lflux

Lrec = ∥xt − x̂t∥2, Lpred = ∥xt − x̂t+1∥2, Ltrans =
∥zt+1 − ẑt+1∥2

where x̂t = ϕ(ψ(xt)) is the reconstruction of xt, x̂t+1 =
M(xt,ut) is the next state prediction, ẑt+1 = ϕ(τ(xt,ut))
is the next state prediction in latent space and zt+1 =
ϕ(xt+1) is the latent representation of true state xt+1. The
physics-informed losses for the model are more specific to
the reservoir simulation task, where Lflux aims to mini-
mize the difference in pressure flux passing in and out of a
given cell. The flux term is split up into two components,
one to calculate the flux loss for reconstruction and one for
prediction as follows,

Lflux = ∥kFrec∥2 + ∥kFpred∥2

Frec = [kro(Sw
t )∆pt − kro(Ŝ

w

t )∆p̂t] + [krw(Sw
t )∆pt −

krw(Ŝ
w

t )∆p̂t]
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Figure 3. Top. Boundary condition-aware mechanism to train and infer on the sub-grid within the solid white line but stitch up using the
sub-grid within the dotted white line. Middle. Model architecture of the 3D LL-E2C with the equation in red showing the additional flow
for LL-E2CO model. Bottom. Representative next state prediction using individual stitching of sectors to reconstruct the full image.

Fpred = [kro(Sw
t+1)∆pt+1 − kro(Ŝ

w

t+1)∆p̂t+1] +

[krw(Sw
t+1)∆pt+1 − krw(Ŝ

w

t+1)∆p̂t+1]

where k is the permeability tensor, kro and krw are relative
permeability fields of the respective components given the
saturation field St and ∆p represents pressure drop across
adjacent grid cells. Following conservation laws, we require
the Lflux to be minimal in order for the model to represent
a physical system.

3.2. E2CO Reduced Order Model

The E2CO model expands on this by modifying the tran-
sition layer to prediction well outputs yt+1. It does so by

approximating global non-linear dynamics with local linear
dynamics similar to the latent representation zt. Here we
parametrize two more local Jacobians C(z̄t) and D(z̄t) and
calculate the well outputs as following

ŷt+1 = C(z̄t)ẑt+1 + D(z̄t)ut.

We thus introduce an additional loss term to train for the
well outputs simultaneously given below.

L = Lrec + Lpred + θtrans × Ltrans + θflux × Lflux +
θwell × Lwell

Lwell = ∥yt+1 − ŷt+1∥2,
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where ŷt+1 is the predicted well output for time t+ 1 and
yt+1 is the actual well output. Notice here that we are adding
additional complexity to the model by trying to predict
another quantity so we expect to have a deterioration in
accuracy when trying to predict xt. Hence, we use E2CO
only when we explicitly require well outputs and employ
E2C otherwise for comparing results.

3.3. Localized Learning for E2C(O)

The E2C reduced order model, when scaled to larger grids,
was found to grow significantly in training time. For a
60 × 220 × 40 grid, training time exceeds 47.2 hours on
an NVIDIA Tesla V100 GPU. To tackle this problem we
propose Localized Learning for Embed to Control (LL-E2C)
(see figure 3), a method where, instead of training on a full
grid, we train on a random subset of structured sub-grids
(sectors).

The initial formulation is as follows. We chose at random
input sectors st from S = {s : s ∈ Rns ⊃ G, ns < n} and
train the model to predict sector state st+1. At inference
time, we pass the elements of the set of all non-overlapping
sectors which are required to fully reconstruct the grid for
state st, I = {sit : ||

n/ns

i sit = xt, ∩n/ns

i sit = ∅}, and stitch
up the predicted outputs sit+1 to produce the full next state
image xt+1.

The key intuition behind sector training is that the underly-
ing physics governing the time evolution of the subsurface
properties is constant. This implies that whichever part of
the grid we train on, the physics the neural network learns
to emulate will remain the same (while respecting boundary
conditions), hence sector-wise training loses no generality
in solution.

In reality however, when sectors are chosen for training, we
are artificially imposing Dirichlet boundary conditions at
the edges where they might otherwise be Von Neumann. For
example, when we train using a sector taken from the middle
of a grid, all the edges of the sector exhibit Von Neumann
boundary conditions but there is no way that the model
would be able to capture this without further information.
Furthermore, when a sector is chosen from a corner or side,
the boundary conditions are a combination of both Dirichlet
and Von Neumann. To tackle this problem, we employ a
mechanism in which we train on sectors of size ns + np
(where np < ns), infer on sectors of size ns + np but only
use sub-sectors of size ns to stitch up to the final xt+1 state,
as shown in figure 2. The location of the sub-sector is chosen
such that its edges line up with the edges of the full image
when the inference sector is around the periphery (to capture
Dirichlet boundary conditions) and its edges are within the
edge of the inference sector when it is taken from the middle
of the image (to capture Von Neumann boundary conditions
by allowing there to be ‘flow’ out of the sub-sector). We

hence modify our formulation to take as inputs expanded
sectors from S̃ = {s̃ : s̃ ∈ Rns+np}, such that S ⊂ S̃ and
infer using the set Ĩ = {s̃it : ||n/ns

i sit = xt, ∩n/ns

i sit =

∅}, where the mapping between s̃it and sit is given by the
description above.

Another issue which arises from training on sectors is that,
although the underlying physics is the same in each sector,
the relative locations of the applied controls vary depending
on where a sector is extracted from. To tackle this, we
add positional encoding by appending the position of the
extracted sector and the relative control locations (with the
locations of controls outside the sector zeroed out) to the
control vector ut. Further to this, permeability information
for each cell is passed in as separate channels to provide
flow information, aiding the greatly reduced information
available to the model.

For the case of predicting well outputs, we extend the above
technique to E2CO and propose Localized Learning for Em-
bed to Control and Observe (LL-E2CO), seen in figure 3.
Here we make the same modification to the transition layer
as the original E2CO model but now, since we are training
on sectors, we need to take into account the fact that each
sector only has information about well controls within its
boundaries and does not have access to information outside
its boundaries. As such, when passing controls ut into the
transition layer to calculate yt+1, we zero out the control
values of all wells not pertaining to the sector in question.
This also acts as an additional proxy for positional encoding
of the sector as the model should, in theory, learn the posi-
tion of the sector based on which well controls are zeroed
out.

4. Results
Testing was conducted for the 2D and 3D cases detailed
earlier and the respective results are compared to ‘ground
truth’ simulation data. In the 2D 60× 60 case, empirically,
we found that sector sizes of (20 + 4)× (20 + 4) with an
inference size of 20× 20 produced the best results for the
LL-E2C model. There was a slight improvement in training
times between the E2C and LL-E2C models but we expect
to see much a larger difference as we scale up to real world
grid sizes. The saturation scalar values for the 2D case
are shown in figure 4. Looking at the errors we see that
they mainly peak around the wave fronts of the diffusion
process. This can be attributed to the fact that this is where
we see the most non-linearity in the system and hence the
linearization process taking place in the transition layer does
not approximate as well.

For the 3D 60× 220× 40 case, which is much closer to the
real world case, with sector sizes of (20 + 4)× (60 + 8)×
(20+4) and an inference size of 20× 60× 20, we present a
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Figure 4. Saturation values predicted by LL-E2C for a single 2D test case. Each time step is 30 days.

Table 1. Training time results in hours

Method
Datasets

without Physics-informed Loss with Physics-informed Loss

2D 3D 2D 3D

E2C 0.4 8.3 0.7 47.2
LL-E2C 0.5 0.9 0.6 2.6

E2CO - 9.1 - 50
LL-E2CO - 0.9 - 2.8

Figure 5. The left plot shows the pressure values from the simulator for a specific layer in the z direction, the predicted pressure values of
the LL-E2C model and the absolute error between the two. The right plot shows the same for saturation values. Each time step is 60 days.

significant speed up time in training from 47.2 hours to 2.6
hours between the E2C and LL-E2C models and 50 hours to
2.8 hours between the E2CO and LL-E2CO models respec-

tively as seen in table 1. In table 1, we also see the training
times of the models with and without the use of physics-
informed losses. Noting that we see a significant increase in
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Figure 6. Mean absolute errors of pressure and saturation predictions for the LL-E2C model. Each dot corresponds to an individual test
case with the bars signifying 1σ confidence intervals. These values correspond to the 3D case with each time step of 60 days.

Figure 7. Field production rates of oil and water for 3 different test cases for the LL-E2CO model. The values correspond to the 3D case
with each time step corresponding to 60 days.

accuracy with the inclusion of physics-informed losses, we
can conclude that the LL-E2C(O) models are much more
powerful for practical use as their training times rival even
the E2C(O) models without their physics-informed losses
incorporated.

Figure 5 shows the pressure and saturation predictions for
20 time steps using the LL-E2C model for a slice of the
grid in the z direction. By analysing the test errors, we
notice that saturation predictions appear to be more accurate
than pressure predictions. This is likely due to the fact that
pressure is a more global state variable and hence Localized
Learning naturally finds it more difficult to model. A more
thorough analysis of these errors were carried out and is
presented in figure 6. The model was trained and run for
all the different test cases and the mean absolute errors

in pressure and saturation values are plotted. We observe
that the absolute errors in predictions are well within the
acceptable range for the purposes of reservoir simulation
surrogate modelling, with mean average absolute errors
over all test cases ranging between 50 psi to 125 psi for
pressure and 0.002 to 0.007 fraction for saturation. We also
observe that, although mean average errors increase as we
predict further into the future, which is expected due to
compounding errors, the model still produces much better
results than can be reasonably expected in latter predictions.
We attribute this to the fact that the system exhibits maximal
non-linearity early on in the time evolution and as the wave
fronts of pressure and saturation diffuse out, the transition
layer becomes a better approximation of the locally linear
dynamics. This leads to a better performance of the LL-E2C
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model.

When testing the LL-E2CO model, we are mainly concerned
with well outputs. As such, in this specific study, we look
at the well production rates of oil and water in a reservoir
under different well controls. The same analysis can be
applied for the CO2 storage task in CCS processes. The
model predicts the outputs of each individual well in the
system for both the 2D and 3D cases and in figure 7 we
present the field production rates of the 3D case. Field rates
are the aggregation of all the well production rates and are
a good indication of the accuracy of the model. From the
figure we see that the predicted production rates of oil are
very close to the actual values produced by the simulator for
the 3 cases. At all time steps, and even at later time steps
when prediction are expected to diverge more, the values
fall within 5% error. This is likely due to the same reasoning
mentioned previously for LL-E2C.

A major advantage of machine learning models over tra-
ditional numerical solvers is their ability to parallelize in-
ference by making batchwise computations. We are able
to pass multiple test cases simultaneously into our model
(which is what we would like to do when trying to find opti-
mal control solutions over a large search space) and extract
individual predictions where necessary. Thus, comparing
inference times of the proposed LL-E2C(O) with the compu-
tation time of HFS, we observe a speed up of the order 104

which brings to light the true strength of machine learning
models in this task.

5. Conclusion
In this work, we motivate the application of machine learn-
ing to subsurface fluid modelling and propose a novel
method called Localized Learning to predict future states of
an advection-diffusion-reaction system, with only a fraction
of the available data. Our method reduces training times by
over an order of magnitude for typical 3D cases, while also
providing comparable accuracy results for all time steps.
In the future, we hope to expand this work to unstructured
grids and meshes.
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